
JOURNAL OF COMPUTATIONAL PHYSICS 126, 229–236 (1996)
ARTICLE NO. 0131

A Relaxation Method for Nonlocal and Non-Hermitian Operators

I. E. LAGARIS,* D. G. PAPAGEORGIOU,† M. BRAUN, AND S. A. SOFIANOS

Physics Department, University of South Africa, P.O. Box 392, 0001 Pretoria, South Africa

Received August 28, 1995; revised February 7, 1996

[5] and Gerber et al. [6]. Alternatively, wave functions can
be obtained by separating out the time dependence andWe present a grid method to solve the time dependent Schröd-

inger equation (TDSE). It uses the Crank–Nicholson scheme to prop- then solving the resulting eigenproblem by expanding on
agate the wavefunction forward in time and finite differences to some basis set. Examples of such techniques are the collo-
approximate the derivative operators. The resulting sparse linear cation and Galerkin methods implemented via piecewisesystem is solved by the symmetric successive overrelaxation itera-

polynomials such as the cubic [3] or quintic Hermite [7]tive technique. The method handles local and nonlocal interactions
and Hamiltonians that correspond to either Hermitian or to non- splines, and the B-splines [4, 8]. These methods are nowa-
Hermitian matrices with real eigenvalues. We test the method by days extensively used in the field of few-body systems.
solving the TDSE in the imaginary time domain, thus converting the Expansions in terms of general basis sets are also employed
time propagation to asymptotic relaxation. Benchmark problems

in the configuration interaction method [9], in the Hartree–solved are both in one and two dimensions, with local, nonlocal,
Fock method [10], in variational methods [11], etc. TheHermitian and non-Hermitian Hamiltonians. Q 1996 Academic Press, Inc.

Monte-Carlo type methods [12] are also used. However,
these belong to a different class since they are stochastic

1. INTRODUCTION methods and not deterministic like the one presented in
this paper. From the plethora of other numerical methods

The evolution of quantum mechanical systems is gov- used to obtain bound state (and scattering) solutions, we
erned by the time dependent Schrödinger equation mention here the pseudospectral methods (see Ref. [13],
(TDSE), and references therein) the discrete variable representa-

tion (DVR) method [14], the Chebyshev–Lanzcos method
of Ref. [15], the Kosloff and Tal-Ezer method [16], thei"

­

­t
uC(t)l 5 H uC(t)l, (1)

filter-diagonalization method of Neuhauser [17], the Green
function filter proposed by Wyatt [18], etc. More details,

where H is the Hamiltonian operator and uC(t)l is the and references to similar methods can be found in the
wave function describing the state of the system. In Eq. (1) aforementioned references.
the Hamiltonian is usually local and Hermitian. In general, Most of these methods, although powerful enough and
however, it can be nonlocal and non-Hermitian. Such a able to solve problems with many degrees of freedom, they
case is encountered, for example, in the integro-differential have certain disadvantages. In the collocation method, for
equation obtained via the resonating group method instance, one always faces the problem of the number and
(RGM) which contains a Hermitian, nonlocal, energy-

distribution of the grid points. An increase of the number
dependent interaction [1, 2]. Other characteristic examples

of collocation points to obtain results of higher accuracyin this respect are the effective Hamiltonians for the Fad-
usually requires not only huge memory but also specialdeev [3] and the integro-differential equation approach
techniques for handling large matrices. In the Galerkin(IDEA) schemes [4] for few-body systems in configuration
method, where higher order Hermite- or B-splines arespace, which are both nonlocal and non-Hermitian.
used, the results are more reliable and stable than thoseVarious grid methods have been developed in the past
obtained by the collocation method, but one encounters,to solve Eq. (1) directly. The mathematical formulation and
in addition, the question of implementing the boundarydescription of various algorithms as well as an extensive
conditions besides the problem of large memory require-literature can be found in the review articles by De Raedt
ments. The expansion in terms of other basis sets is simi-
larly handicapped from these problems. Moreover, one

* Permanent address: Department of Computer Science, University of must use a lot of intuition in order to choose the proper set.Ioannina, GR 451 10, Ioannina, Greece.
The method of the time evolution of a state via the† Permanent address: Department of Chemistry, University of Ioan-

nina, GR 451 10, Ioannina, Greece. TDSE, on the other hand, does not suffer from the afore-
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mentioned problems. One can obtain the desired ground e Ht/2uC(t 1 t)l 5 e2Ht/2uC(t)l.
state starting from an initial guess C(r, t 5 0) which is not

The CN scheme is obtained upon Taylor expanding thecrucial for the subsequent evolution. The memory require-
exponential and keeping only linear terms in t,ments are comparatively small, and the implementation

is quite simple. Furthermore, its extension to treat time-
dependent Hamiltonians is rather straightforward. S1 1

t

2
HD uC(t 1 t)l 5 S1 2

t

2
HD uC(t)l. (2)Schemes of this kind have been successfully used in atomic

and molecular physics [19] to obtain bound state, as well
as scattering, solutions. For a Hermitian Hamiltonian one can expand the wave

In the present work we employ the relaxation technique; function uC(t)l in terms of its orthonormal eigenstates ukl,
i.e., we solve the TDSE in imaginary time. This leads to
the determination of the ground state of the system in a

uC(t)l 5 Oy
k50

ake2Ektukl
(3)

unique way. The method is, of course, applicable to the
real time TSDE as well. We use a lattice representation of
the Hamiltonian and the Crank–Nicolson (CN) algorithm

5 e2E0t Ha0u0l 1 Oy
k51

ake2DktuklJ ,[20–22] to propagate the wave function. In this, the evolu-
tion operator e2tH, for small time step t is approximated
by (1 1 t/2H)21(1 2 t/2H). Such a representation of the where E0 , E1 ? ? ? are the eigenvalues of H and Dk ;
exponential has been employed by Golberg et al. [21] in Ek 2 E0 . 0. For large values of the time variable, only
the 1960s, where it was referred to as ‘‘Cayley form.’’ It the first term survives, i.e.,
was emphasized there that this type of approximation to
the exponential is simple, unitary, and has the desirable lim

tRy
uC(t)l 5 a0e2E0tu0l.

property of being exact to second order in t. The biggest
advantage of this approximation, however, is that in practi- This is the principle on which the relaxation method is
cal applications is unconditionally stable. Furthermore, it based. The expectation value estimator is defined by
is flexible enough to handle nonlocal and non-Hermitian
Hamiltonians. The major drawback, often cited (see, for

E(t) ; kC(t)uH uC(t)l
kC(t)uC(t)l

.example, Ref. [5]), of this method is the inversion of the
matrix (1 1 t/2H). However, such an inversion, as we
shall show, is not necessary and if, in addition, the sparsity Using Eq.(3) we obtain
of this matrix is exploited, the approach becomes a lot
more economical and efficient. Moreover, since the CN
method is unconditionally stable [22] and the procedure
does not require an a priori deep understanding of the E(t) 5 E0 1

Oy
k51

Dk uak/a0u2 e22Dkt

1 1 Oy
k51

uak/a0u2 e22Dktproblem or any educated guess-work, it is suitable for
practical applications.

In Section II, we describe the time-dependent scheme for
and, hence,the TDSE and the relaxation method for local, nonlocal,

Hermitian, and non-Hermitian Hamiltonians. In Section III
lim
tRy

E(t) 5 E0.we describe in detail the implementation of the method. In
Section IV we describe the problems solved and present our
results, while in Section V we summarize our conclusions. Note that E(t) $ E0 for t . 0. The asymptotic energy

estimator is defined asII. THE METHOD

The relaxation method proceeds by replacing t by 2it
E(t, t) ; 1

2t
ln F kC(t)uC(t)l

kC(t 1 t)uC(t 1 t)lGin Eq. (1). The TDSE then transforms into a diffusion-like
equation (" 5 1),

­

­t
uC(t)l 5 2H uC(t)l,

5 E0 1
1
2t

ln 3 1 1 Oy
k51

uak/a0u2 e22Dkt

1 1 Oy
k51

uak/a0u2 e22Dkt1t)4 .
having the formal solution

uC(t 1 t)l 5 e2HtuC(t)l.

For numerical work the latter is equivalently written Again
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lim
tRy

E(t, t) 5 E0, Then we define C(ri) ; Ci ; kiuCl. The matrix elements
of the relevant operators in this representation are

and E(t, t) $ E0 for all t . 0. Furthermore, limtR0 k j ur̂uil 5 rik j uil 5 ridi, j .
E(t, t) 5 E(t).

For non-Hermitian Hamiltonians with real eigenvalues, Thus the r̂ operator (and every function of it) corresponds
such as those arising in the Faddeev decomposition of the to a diagonal matrix. Since we work on a discrete basis
interaction in pairwise components, the eigenstates are not and derivatives are defined under continuity assumptions,
orthogonal. Let us denote by Nmk ; kmukl the overlap it is necessary to assume some discrete approximation in
between the states uml and ukl. Then the expectation energy order to calculate the matrix elements of the derivative
estimator in this case is written (we assume kkukl 5 1) operators. Using finite difference approximations, the first

derivative can be expressed as

Ki U ­

­rUCL ; ­

­r
C(r)ur5ri

P O
j

aijCj 5 O
j

aij k j uCl;

E(t) 5 E0 1

Oy
k51

Dk
ak

a0
N0ke2Dkt

1 Oy
k51

Oy
l51

Dk
ak

a0

a*l
a*0

Nlke2(Dk1Dl)t

1 1 Oy
k51

ak

a0
N0ke2Dkt 1 Oy

k51

a*k
a*0

Nk0e2Dkt

1 Oy
k51

Oy
l51

ak

a0

a*l
a*0

Nlke2(Dk1Dl)t

. hence kiu­/­ru jl P aij and (­/­r)uil P ok aik ukl. For the
central difference approximation of order O(h2

r ), one has

aij 5
1

2hr
[di11, j 2 di21, j]

andThe quantity on the right added to E0 is not necessarily
positive for all t. Its form resembles that of a damped
oscillation. This means that at times not long enough for ­

­r
uil 5

1
2hr

[ui 2 1l 2 ui 1 1l].
the damping to dominate, we may have E(t) , E0 , which
is not the case for Hermitian Hamiltonians. In practice,

Similarly for the second-derivative operator,this means that longer propagation times are necessary to
ensure the dominance of the damping.

For the asymptotic energy estimator we similarly have KiU ­2

­r2U CL ; ­2

­r2 C(r)ur5ri
P O

j
bijCj 5 O

j
bij k j uCl.

Hence bij P kiu­2/­r2u j l and (­2/­r2)uil P ok bik ukl.
Again if the central difference approximation of order

O(h2
r ) is used, we get

E(t, t) 5 E0 1
1
2t

ln3
1 1 Oy

k51

ak

a0
N0ke2Dkt 1 Oy

k51

a*k
a*0

Nk0e2Dkt

1 Oy
k51

Oy
l51

ak

a0

a*l
a*0

Nlke2(Dk1Dl)t

1 1 Oy
k51
Sak

a0
N0k 1

a*k
a*0

Nk0D e2Dkt1t)

1 Oy
k51

Oy
l51

ak

a0

a*l
a*0

Nlke2(Dk1Dl)(t1t)

4 bij 5
1

D2
r

[di11, j 2 2di, j 1 di21, j ]

and

­2

­r2 u j l 5
1
h2

r
[u j 1 1l 1 u j 2 1l 2 2u j l].

which displays similar limiting behaviour.

2. Two Dimensional
III. IMPLEMENTATION

Suppose that the second direction is discretized as
A. Discretization

zj 5 z1 1 ( j 2 1)hz , j 5 1, 2, ..., m.1. One Dimensional

Consider the one-dimensional n-point grid given by The representation now is given by ui, j l, namely by a two
index vector that specifies the point (ri, zj ) on the two-
dimensional grid. As in the one-dimensional case,ri 5 r1 1 (i 2 1)hr , i 5 1, 2, .., n.
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ki, j uCl ; Cij when other difference approximations for the derivatives
are employed, can easily be derived following the above
formulation.and, again, for central difference approximations of order

O(h2
r ) and O(h2

z) we have
B. The Symmetric Successive Over-Relaxation Method

In general, the Hamiltonian is writtenKk, l U ­

­rU i, jL5
1

2hr
[dk,i21 2 dk,i11]dl, j

H 5 H0 1 HNL,
and

where H0 consists of local and derivative operators, and
HNL is the nonlocal part, consisting of integral operators.Kk, l U ­

­zU i, jL5
1

2hz
[dl, j21 2 dl, j11]dk,i . Then Eq. (2) is written

Alternatively, each site (point on the two-dimensional F1 1
t

2
(H0 1 HNL)G uC(t 1 t)l

mesh) with ‘‘coordinates’’ i, j can be labeled by a single
index I that is given by

5 F1 2
t

2
(H0 1 HNL)G uC(t)l.

I 5 ( j 2 1)n 1 i

and, hence, we may define the single index representation The presence of the matrix HNL usually destroys the spar-
uI l ; ui, j l. Inversely i, j are given by sity of the representation. However we may recast it as

i 5 1 1 (I 2 1) mod n, j 5
I 2 i

n
1 1. S1 1

t

2
H0D uC(t 1 t)l 5 F1 2

t

2
(H0 1 HNL)G

Letting uK l 5 uk, l l, we obtain for the derivative operator uC(t)l 2
t

2
HNLuC(t 1 t)l,

­

­r
uI l 5

1
2hr

[uI 2 1l 2 uI 1 1l]
which lends itself to iteration. The latter equation is a
linear system BC 5 C, where B is sparse and thus it can
be solved efficiently using iterative methods. For this, oneand, hence,
splits the B-matrix as

KK U ­

­rU IL5
1

2hr
[dK,I21 2 dK,I11]. B 5 D 1 L 1 U,

where D is the diagonal part while L and U are the lowerSimilarly, for the derivative with respect to the z-variable
and upper triangular parts. Thus, we may writewe have

(D 1 L)C 5 C 2 UC­

­z
uI l 5

1
2hz

[uI 2 nl 2 uI 1 nl]

or

and
(D 1 U)C 5 C 2 LC,

KK U ­

­z U IL5
1

2hz
[dK,I2n 2 dK,I1n ]. suggesting the iterative procedure,

(D 1 L)C (n11/2) 5 C 2 UC(n)

In this approximation the derivative with respect to r
(D 1 U)C(n11) 5 C 2 LC(n11/2).is represented by a tridiagonal matrix (as in the one-

dimensional case), while the derivative with respect to z is
represented by a matrix with two paradiagonals, n elements These can be solved directly by forward and backward

substitution, respectively. The scheme is known as theabove and below the main diagonal. Similar rules hold
for the second derivatives. Formulae for matrix elements, symmetric Gauss–Seidel method. However, another more
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efficient scheme, namely, the symmetric successive over- B. Nonlocal Hamiltonian
relaxation (SSOR) method [22–25] can be used. In this,

We consider here the resonating group method (RGM
to accelerate convergence, an acceleration parameter g [

[1] nonlocality for the n 1 a system,
[0, 2] is introduced to obtain the more efficient scheme,

Vl(r, r9) 5 VD(r)d(r 2 r9) 1 Kl(r, r9),(D 1 gL)C(n11/2) 5 g(C 2 UC(n)) 1 (1 2 g)DC(n)

(D 1 gU)C(n11) 5 g(C 2 LC(n11/2)) 1 (1 2 g)DC(n11/2),
where VD(r) is the local or direct part of the interaction
and Kl(r, r9) is the nonlocal part which, in general, is energy

which for g 5 1 reduces to the symmetric Gauss–Seidel
dependent. In the K-model of this method where the tar-

method. The advantages of this scheme, the choice of g,
get-recoil effects and core-exchange contributions are

and other technical details can be found in Numerical
omitted [27], the direct potential is given by

Recipes (Ref. [25]) and will not be repeated here.

IV. RESULTS
VD(r) 5 23V0cw expF2

ak
a 1 k

r2G ,

Various one- and two-dimensional Hamiltonians have
been chosen to test our method. The results obtained are

and the nonlocal, for l 5 0, bycompared, where possible, with those of other methods.
In general, the comparison shows that the results are indis-
tinguishable for all practical purposes. However, to com-

K0(r, r9) 5 23f
V0bw

k
exp[2(a/2 1 k)(r2 1 r92)]pare the efficiency among several methods, is a very diffi-

cult task, since CPU-times are either not given, or they
hexp[2krr9] 2 exp[22krr9 ]jcorrespond to different machines. Therefore we avoided

to present such a comparison. Nevertheless, in what fol-
with V0 5 72.98 MeV, k 5 0.46 fm22, w 5 0.4075, and a 5lows, we report our CPU-times to demonstrate that even
0.685 fm22. Further b 5 (a/f)3/2 and c 5 (a/(a 1 k))3/2.though we did not spend time to optimize our code, the
This interaction is known to generate a deep bound stateprocedure we propose requires reasonable computer time
widely known as the Pauli forbidden state (PFS).on a small workstation. The agreement of our results with

The Schrödinger equation is writtenthose obtained via other methods shows that our scheme
is both convergent and accurate. We mention here that
one can control the accuracy via the order of the approxi- F"2

2e
d 2

dr2 1 (E 2 VD(r))G u0(r) 5 Ey

0
K0(r, r9)u0(r9) dr9.mations to the derivatives and the grid step size.

A. Local Hamiltonian
We solved this equation and obtained for the PFS, usingAs a first example we consider the triplet state of the
150 mesh points in the range (0, 20) fm, the value of E 5Malfliet-Tjon I 1 III nucleon–nucleon potential [26] which
224.07 MeV in 40 CPU-seconds. The starting wave func-is widely used in bound state and scattering calculations in
tion was as in the local case.the field of few-nucleon physics. This potential is given by

C. Two-Dimensional, Local, Hermitian HamiltonianV(r) 5 1438.72 exp(23.11r)/r 2 626.885 exp(21.55r)/r,
We consider here the Hénon–Heiles potential, which

was treated by us using the Chebyshev–Lanczos methodwhere the units are in the MeV-fm system.
[15],The result obtained for the bound state, using 400 mesh

points in the range (0, 28) fm with a time step t 5 0.001,
is 22.2305 MeV, in agreement with the result obtained by
Payne [3] via the collocation method with Hermite splines. V(x, y) 5

1
2

(x2 1 y2) 1
1

4Ï5
x Sy2 2

1
3

x2D .
The initial wave function was taken to be r2 exp(2r), and
the required CPU-time was 43 s on an IBM RS6000-320H.
All subsequently quoted CPU-times refer to this worksta- We found for the ground state E0 5 0.998592, using a two-

dimensional box [26, 6] 3 [26, 6] with 64 points taken intion. We note in passing that CPU-times depend strongly
on the choice of the time step t, the number of grid points, each direction. This compares favorably with the value of

0.9986 obtained in Ref. [16] and by us [15], E 5 0.998595.the required accuracy, and the SSOR acceleration parame-
ter g. In this work no effort was made for an optimal choice. The calculation required 80 CPU-seconds.
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D. Two-Dimensional, Local, Here x represents all the coordinates and rij 5 ri 2 rj , ri

being the coordinate of the ith particle. The hyperradiusNon-Hermitian Hamiltonians
of the system is given by r2 5 2/A oi, j,A r2

ij . To bring
The test case chosen here is the 4He atom system. The

Eq. (4) into a computationally manageable form, one ap-
Hamiltonian, in the framework of the hyperspherical har-

plies the hyperspherical harmonics method [4], the descrip-
monics method and neglecting the e–e repulsion, is writ-

tion of which is beyond the scope of this article. For the A-
ten [28]

boson system, one finally has to solve the IDEA equation

H 5 2
1
2

­2

­r2 1
15
8

1
r2 2

2
r2 F(1 2 z2)

­2

­z2 2 3z
­

­zG H"2

m2F2
­2

­r2 1
L0(L0 1 1)

r2

2
Ï8

r F 1
Ï1 1 z

1
1

Ï1 2 z
G ,

2
4
r2

1
W0(z)

­

­r
(1 2 z2)W0(z)

­

­rG
where the r [ [0, y] and z [ [21, 11].

Using 86 points in the r-direction in r [ (0, 22) and 126
1

A(A 2 1)
2

V0(r) 2 EJ P(z, r) 5 2[V(rij )points in the z-direction we obtained, after propagating
the initial form C(r, t 5 0) 5 r4e23rÏ11z, a value for the

2 V0(r)]P(z, r).ground state energy E0 5 23.9975 a.u., in good agreement
with the value of 3.9998 obtained by Fabre et al. [28].

Here the nonlocal term enters via the function P(z, r)The Hamiltonian that takes into account the e–e interac-
given bytion is

P(z, r) 5 P(z, r) 1 E11

21
f(0)(z, z 9)P(z9, r) dz 9,

H 5 2
1
2

­2

­r2 1
15
8

1
r2 2

2
r2 F(1 2 z2)

­2

­z2 2 3z
­

­zG
where

2
Ï8

r F 1
Ï1 1 z

1
1

Ï1 1 z
2

1
2

1
Ï1 1 uzuG .

f(0)(z, z9) 5 W0(z9) Oy
K50

( f 2
K 2 1)
hK

P
a,b
K (z)P

a,b
K (z9),

Following the same procedure we get E0 5 22.87875 a.u.
The extrapolated result of Ref. [28] is 22.879028 a.u. Each

P
a,b
K (z) being the Jacobi polynomials while f 2

K , hK , andof these calculations requires approximately 30 CPU-
W0(z) are given byminutes.

E. Two-Dimensional Nonlocal, f 2
K 5 1

Non-Hermitian Hamiltonian

1
h2(A 2 2)P

a,b
K (21/2) 1 [(A 2 2)(A 2 3)/2]P

a,b
K (21)j

P a,b
K (1)

,We are concerned here with the solution of a two-dimen-
sional integro-differential equation describing the bound
state of an A-nucleon system known as IDEA [4, 29–33].

hK 5 E11

21
W0(z)[P

a,b
K (z)]2 dz,Since this is our main example, we will describe the equa-

tion solved and display its complexity in more detail. In
this method, the A-body wave function of the Schrödinger and
equation is expanded as

W0(z) 5 (1 2 z)a(1 1 z)b,
C(x) 5 O

i, j,A
cij(x),

with a 5 (D 2 5)/2, b 5 1/2, and D 5 3 (A 2 1). Further
L0 5 (D 2 3)/2 and V0(r) is the so-called hypercentralsince the underlying interaction can be written as a sum
potential given byof two-body forces V(x) 5 oi, j,A V(rij ). The components

cij (x) obey the Faddeev-type equation
V0(r)

(T 2 E)cij (x) 5 2V(rij ) O
i, j,A

cij (x). (4) 5
G(D/2)

Ïf2D/222G[(D 2 3)/2]
E11

21
W0(z)V(rÏ(1 1 z)/2) dz.
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TABLE I function which is not crucial at all. In fact we experimented
with various starting functions, all finally giving the sameThree-Boson Binding Energies (in MeV) Obtained with the
binding energy and wave function. The memory require-Present Method and Compared with the Results of Other Methods
ments are not severe as in other competing methods, since

Potential Present HS HHEM ETBM F GFMC the matrices needed are sparse. Despite the fact that no
attention was given, for the time being, to the efficiencyMT-V [34] 7.72 7.73 7.783 7.778 — —
of the method, it turns out that it is not prohibitively expen-MT-V [36] 8.19 8.19 — — 8.253 8.26

S3 [38] 6.686 6.67 — 6.677 6.696 — sive in CPU time. Note that all our work has been per-
formed on small workstations rated around 10 Mflops (Lin-

Note. Hermite splines (HS) [31], hyperspherical harmonic expansion pack 100DP [40].
method (HHEM) [34], equivalent two-body method (ETBM) [35], Fad-

As far as the performance in terms of CPU-time in threedeev (F) [37], and Green’s function Monte Carlo (GFMC) [36] method.
and higher dimensions is concerned, an estimate can be
obtained as follows: Suppose we have a one-dimensional
problem and a two-dimensional problem. To make a fairIn Table I we list our results for A 5 3, along with the
comparison of the CPU-times required for convergence inresults obtained by different methods. The corresponding
these two problems, let us assume that the gaps Ei 2 E0results for the four-boson case are given in Table II. In
for the low lying energy levels Ei are identical in boththese calculations we used 86 points in the r-direction in
problems. Then since convergence is achieved when thethe range (0–15) fm and 126 points in the z-direction.
factors e2(E12E0)t, e2(E22E0)T, ... become small, both systemsUsing the same starting wave function as in the 4He atom
require the same time-of-propagation; i.e., both systemssystem, the required CPU-times are about 40 min. It is
need the same number of time steps. Hence, the differenceseen that our results are in excellent agreement with those
in the CPU-times will stem from the solution of the sparseobtained by other methods. The same excellent agreement
linear system via the SSOR method. Since this system iswas also found for other interactions as well as for the
sparse (a few diagonals) the number of operations isSIDE approximation [4], where the results practically coin-
roughly proportional to the grid points. Therefore, one cancide with those we obtained using Hermite splines of orders
state for the CPU-times the following approximate result:5 and 7 and by B-splines of order 7 via the Galerkin

method. It is noted that the component P(r, z) obtained
using the time-evolution method is identical to the one cpu22d

cpu12d
5

N1 N2

N1
5 N2 ,calculated via the Galerkin methods.

V. CONCLUSIONS
where N1 and N2 are the number of grid points in each of
the directions. Similarly, for three-dimensional problemsWe presented a new method capable of solving the

TDSE. We employed this method to solve one- and two-
dimensional problems, with local and nonlocal Hermitian cpu32d

cpu22d
5

N1N2N3

N1N2
5 N3 .and non-Hermitian Hamiltonians having real eigenvalues.

The non-Hermitian two-dimensional cases are by no means
easy to solve, especially those corresponding to realistic

It is clear that the efficiency and the CPU-time concernedthree- and four-body systems. The successful application
depends on the complexity and spectrum of the hamiltoni-of the method in these cases demonstrates its robustness
ans considered.and reliability.

Since the method is under development there is plentyThe advantages of the method are numerous, the most
of room for improvements. Moreover, the use of fasterimportant being its simplicity. As shown, no guesswork or
computers will undoubtedly allow the solution of moredeep insight is required. The only guess is the initial wave
complicated problems, coupled channels, and problems
involving time-dependent Hamiltonians. The CN method
may be generalized by using better approximants for theTABLE II
time-development operator, without destroying the sparse

As in Table I, but for the Four-Boson System
structure of the matrices. One such approximation may be

Potential Present HS HHEM ETBM obtained by expanding the exponential in terms of Cheby-
shev polynomials [6]. Another possible improvement is the

MT-V [34] 29.46 29.46 — — use of nonuniform (or piecewise uniform) grids, so that
MT-V [36] 30.68 30.68 — —

fewer grid points will be necessary. This will result in aS3 [38] 27.11 27.09 26.0 26.47
considerable decrease of the CPU-time, as well as the
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18. R. E. Wyatt, Phys. Rev. E 51, 3643 (1995).memory requirements of the method. Such improvements
19. R. Schinke, Photodissociation Dynamics: Spectroscopy and Fragmen-are under way.

tation of Small Polyatomic Molecules (Cambridge Univ. Press, Cam-
bridge, 1993).
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